AVL树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
class AVLTree<K extends Comparable<K>, V> {

private class Node {
public K key;
public V value;
public Node left, right;
public int height;

public Node(K key, V value) {
this.key = key;
this.value = value;
left = null;
right = null;
height = 1;
}
}

private Node root;
private int size;

public AVLTree() {
root = null;
size = 0;
}

public int getSize() {
return size;
}

// 获得节点的高度
private int getHeight(Node node) {
if (node == null) {
return 0;
}
return node.height;
}

public boolean isEmpty() {
return size == 0;
}

public boolean contains(K key) {
return getNode(root, key) != null;
}

// 添加元素
public void add(K key, V value) {
root = add(root, key, value);
}

// 向以node为根的二分搜索树种插入元素E
private Node add(Node node, K key, V value) {
// 当我们递归到null的时候就一定要创建一个节点
if (node == null) {
size++;
return new Node(key, value);
}

if (key.compareTo(node.key) < 0) {
node.left = add(node.left, key, value);
} else if (key.compareTo(node.key) > 0) {
node.right = add(node.right, key, value);
} else {
node.value = value;
}

// 更新height
node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));
// 计算平衡因子
int balanceFactor = getBalanceFactor(node);
// 平衡维护,插入的元素在不平衡的节点的左侧的左侧 LL
if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0) {
return rightRotate(node);
}
// 平衡维护,插入的元素在不平衡的节点的右侧的右侧 RR
if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0) {
return leftRotate(node);
}
// 平衡维护,插入的元素在不平衡的节点的左侧的右侧 LR
if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
node.left = leftRotate(node.left);
return rightRotate(node);
}
// 平衡维护,插入的元素在不平衡的节点的右侧的左侧 RL
if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
node.right = rightRotate(node.right);
return leftRotate(node);
}
return node;
}


private Node rightRotate(Node y) {
Node x = y.left;
Node T3 = x.right;
x.right = y;
y.left = T3;
// 更新height
y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x;
}

private Node leftRotate(Node y) {
Node x = y.right;
Node T2 = x.left;
x.left = y;
y.right = T2;

y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x;
}

private int getBalanceFactor(Node node) {
if (node == null) {
return 0;
}
return getHeight(node.left) - getHeight(node.right);
}

// 判断该二叉树是不是一颗平衡搜索树
public boolean isBST() {
ArrayList<K> keys = new ArrayList<>();
inOrder(root, keys);
for (int i = 1; i < keys.size(); i++) {
if (keys.get(i - 1).compareTo(keys.get(i)) > 0) {
return false;
}
}
return true;
}

// 判断以Node为节点的二叉树是不是一颗平衡二叉树
public boolean isBalanced() {
return isBalanced(root);
}

private boolean isBalanced(Node node) {
if (node == null) {
return true;
}
int balanceFactor = getBalanceFactor(node);
if (balanceFactor > 1) {
return false;
}
return isBalanced(node.left) && isBalanced(node.right);
}

private void inOrder(Node node, ArrayList<K> keys) {
if (node == null) {
return;
}
inOrder(node.left, keys);
keys.add(node.key);
inOrder(node.right, keys);

}

private Node getNode(Node node, K key) {
if (node == null) {
return null;
}
if (key.compareTo(node.key) < 0) {
return getNode(node.left, key);
} else if (key.compareTo(node.key) > 0) {
return getNode(node.right, key);
} else {
return node;
}
}

public V get(K key) {
Node node = getNode(root, key);
return node == null ? null : node.value;
}

public void set(K key, V value) {
Node node = getNode(root, key);
if (node == null) {
throw new IllegalArgumentException(key + "doesn't exist !");
}
node.value = value;
}

public V remove(K key) {
Node node = getNode(root, key);
if (node != null) {
root = remove(root, key);
return node.value;
}
return null;
}

private Node remove(Node node, K key) {
if (node == null) {
return null;
}
Node retNode;
if (key.compareTo(node.key) < 0) {
node.left = remove(node.left, key);
retNode = node;
} else if (key.compareTo(node.key) > 0) {
node.right = remove(node.right, key);
retNode = node;
} else {
// 3种情况
// 待删除节点左子树为空
if (node.left == null) {
Node rightNode = node.right;
node.right = null;
size--;
retNode = rightNode;
} else if (node.right == null) {
// 待删除节点右子树为空
Node leftNode = node.left;
node.left = null;
size--;
retNode = leftNode;
} else {
// 待删除节点左右子树均不为空的情况
// 找到比待删除节点大的最小节点,即待删除节点右子树的最小节点。
// 用这个节点顶替待删除节点的位置
Node successor = minimum(node.right);
// 这里我们进行了删除size进行了减操作
successor.right = remove(node.right, successor.key);
successor.left = node.left;
node.left = node.right = null;
retNode = successor;
}
}

if (retNode == null) {
return null;
}

// 更新height
retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));
// 计算平衡因子
int balanceFactor = getBalanceFactor(retNode);

// 平衡维护,插入的元素在不平衡的节点的左侧的左侧 LL
if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0) {
return rightRotate(retNode);
}
// 平衡维护,插入的元素在不平衡的节点的右侧的右侧 RR
if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0) {
return leftRotate(retNode);
}
// 平衡维护,插入的元素在不平衡的节点的左侧的右侧 LR
if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
retNode.left = leftRotate(retNode.left);
return rightRotate(retNode);
}
// 平衡维护,插入的元素在不平衡的节点的右侧的左侧 RL
if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
retNode.right = rightRotate(retNode.right);
return leftRotate(retNode);
}
return retNode;
}

// 最小值
public V minimum() {
if (size == 0) {
throw new IllegalArgumentException("BST is empty");
}
return minimum(root).value;
}

// 返回已node为根的二分搜索树的最小值所在的节点
private Node minimum(Node node) {
if (node.left == null) {
return node;
}
return minimum(node.left);
}
}
-------------本文结束感谢您的阅读-------------